High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe

نویسندگان

  • Aaron D. Aguirre
  • Juergen Sawinski
  • Shu-Wei Huang
  • Chao Zhou
  • Winfried Denk
  • James G. Fujimoto
چکیده

Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at frame rates up to 5 Hz with resolutions of < 4 microm axial and < 2 microm transverse. The system utilized a novel polarization compensation method to combat wavelength dependent source polarization and achieve broadband electro-optic phase modulation compatible with ultrahigh axial resolution. In addition, the system incorporated an auto-focusing feature that enables precise, near real-time alignment of the confocal and coherence gates in tissue, allowing user-friendly optimization of image quality during the imaging procedure. Ex vivo cellular images of human esophagus, colon, and cervix as well as in vivo results from human skin are presented. Finally, the system design is demonstrated with a miniaturized piezoelectric fiber-scanning probe which can be adapted for laparoscopic and endoscopic imaging applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography

We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-...

متن کامل

Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor.

We present an endoscopic probe for optical coherence tomography (OCT) equipped with a miniaturized hollow ultrasonic motor that rotates the objective lens and provides an internal channel for the fiber to pass through, enabling 360 deg unobstructed circumferential scanning. This probe has an outer diameter of 1.5 mm, which is ultra-small for motorized probes with an unobstructed view in distal ...

متن کامل

Gradient index lens based combined two-photon microscopy and optical coherence tomography.

We report a miniaturized probe-based combined two-photon microscopy (TPM) and optical coherence tomography (OCT) system. This system is to study the colorectal cancer in mouse models by visualizing both cellular and structural information of the colon in 3D with TPM and OCT respectively. The probe consisted of gradient index (GRIN) lenses and a 90° reflecting prism at its distal end for side-vi...

متن کامل

GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking.

In this manuscript, a GRIN (gradient index) lens rod based probe for endoscopic spectral domain optical coherence tomography (OCT) with dynamic focus tracking is presented. Current endoscopic OCT systems have a fixed focal plane or working distance. In contrast, the focus of this endoscopic OCT probe can dynamically be adjusted at a high speed (500 mm/s) without changing reference arm length to...

متن کامل

Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe.

PURPOSE To achieve high-fidelity optical coherence tomography (OCT) imaging of ex vivo collector channels (CCs) exiting Schlemm's canal (SC) using a paired-angle rotating scanning endoscopic probe. METHODS An endoscopic probe was developed to guide an OCT laser beam onto human cadaver eye tissue samples to detect CCs. The prototype probe consisted of two gradient-index (GRIN) lenses that were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010